15ACS07-COMPUTER ORGANIZATION

L T P C 3 1 0 3

Course Objective:

- To gain methodical understanding of the basic structure and operation of a digital computer.
- To learn the fundamentals of computer organization and its relevance to classical and modern problems of computer design
- To make the students understand the structure and behavior of various functional modules of a computer.
- To explore the hardware requirements for cache memory and virtual memory for better understanding of memory management
- To understand the techniques that computers use to communicate with I/O devices
- To study the concepts of pipelining and the way it can speed up processing.
- To understand the basic characteristics of multiprocessors

Course Outcomes:

- Optimize the algorithms to exploit pipelining and multiprocessors
- Algorithm design for bit level arithmetic
- Ability to use memory and I/O devices effectively

UNIT - I:

Introduction to Computer Organization and Architecture

Basic Computer Organization – CPU Organization – Memory Subsystem Organization and Interfacing – I/O Subsystem Organization and Interfacing – A Simple Computer Levels of Programming Languages, Assembly Language Instructions, Instruction Set Architecture Design, A simple Instruction Set Architecture

UNIT - II:

Central Processing Unit: Introduction, General Register Organization, Stack Organization, Instruction formats –Addressing Modes – Data Transfer and Manipulation – Program Control.

Computer Arithmetic: Addition and Subtraction – Multiplication Algorithms – Division Algorithms –Floating-Point Arithmetic Operations – Decimal Arithmetic unit

UNIT - III:

Register Transfer: Register Transfer Language – Register Transfer – Bus and Memory Transfers – Arithmetic Micro operations – Logic Micro operations – Shift Micro operations.

Control Unit: Control Memory – Address Sequencing – Micro program Example – Design of Control Unit

UNIT-IV:

Memory Organization: Memory Hierarchy – Main Memory – Auxiliary Memory – Associative Memory – Cache Memory – Virtual Memory.

Input/output Organization: Input-Output Interface – Asynchronous Data Transfer – Modes of Transfer – Priority Interrupt – Direct Memory Access (DMA).

gol Greh

UNIT - V:

Pipeline: Parallel Processing — Pipelining — Arithmetic Pipeline — Instruction Pipeline. **Multiprocessors:** Characteristics of Multiprocessors — Interconnection Structures — Inter Processor Arbitration — Inter Processor Communication and Synchronization

Text Books:

- 1. "Computer Systems Organization and Architecture", John D. Carpinelli, PEA, 2009.
- 2. "Computer Systems Architecture", 3/e, M. Moris Mano, PEA, 2007

Reference Books:

- 1. "Computer Organization", Carl Hamacher, ZvonksVranesic, SafeaZaky, 5/e, MCG, 2002.
- 2. "Computer Organization and Architecture", 8/e, William Stallings, PEA, 2010.
- 3. "Computer Systems Architecture a Networking Approach", 2/e, Rob Williams.
- 4. "Computer Organization and Architecture" Ghoshal, Pearson Education, 2011.
- 5. "Computer Organization and Architecture", V. Rajaraman, T. Radakrishnan.
- 6. "Computer Organization and Design", P. Pal Chaudhuri, PHI
- 7. "Structured Computer Organization", Andrew S. Janenbaum, Todd Austin
- 8. "Computer Architecture" Parahmi, Oxford University Press

Greh

1